Partial Epstein zeta functions on binary linear codes and their functional equations
نویسنده
چکیده
In this paper, partial Epstein zeta functions on binary linear codes, which are related with Hamming weight enumerators of binary linear codes, are newly defined. Then functional equations for those zeta functions on codes are presented. In particular, it is clarified that simple functional equations hold for partial Epstein zeta functions on binary linear self-dual codes.
منابع مشابه
On Computing Artin L - Functions in the Critical Strip
This paper gives a method for computing values of certain nonabelian Artin ¿-functions in the complex plane. These Artin ¿-functions are attached to irreducible characters of degree 2 of Galois groups of certain normal extensions K of Q. These fields K are the ones for which G = Gal(.KyQ) has an abelian subgroup A of index 2, whose fixed field Q(\/d) is complex, and such that there is a a S G —...
متن کاملArtin L - Functions in the Critical Strip
This paper gives a method for computing values of certain nonabelian Artin ¿-functions in the complex plane. These Artin ¿-functions are attached to irreducible characters of degree 2 of Galois groups of certain normal extensions K of Q. These fields K are the ones for which G = Gal(.KyQ) has an abelian subgroup A of index 2, whose fixed field Q(\/d) is complex, and such that there is a a S G —...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملHigher moments of the Epstein zeta functions
holds as T → ∞. The basic tools of them are the approximate functional equations for ζ(s) and ζ(s). Therefore, one might think that we can obtain the asymptotic formula for the higher moments (sixth moment, eighth moment, etc· · · ) of ζ(s) on the critical line Re(s) = 12 by using the approximate functional equations for ζ(s) (k ≥ 3). However, although these approximate functional equations are...
متن کاملQuartic and pantic B-spline operational matrix of fractional integration
In this work, we proposed an effective method based on cubic and pantic B-spline scaling functions to solve partial differential equations of fractional order. Our method is based on dual functions of B-spline scaling functions. We derived the operational matrix of fractional integration of cubic and pantic B-spline scaling functions and used them to transform the mentioned equations to a syste...
متن کامل